Hashing and AMQs for
large-scale sequence
search



Facing a New Challenge

The Sequence Read Archive (SRA) ..

1016

—_
(&)

Petabyte /

RN
o

RN

o
—
o

—_
w

bytes of data
S

—

o
—
N

o e

—

)
—
N

S S g g e o
date
is not searchable by sequence* ! (Yes, | know!)

This renders what is otherwise an immensely valuable public resource largely inert

Q: What if | find e.g., a new disease-related gene, and want to see if it
appeared in other experiments?

A: (basically) Too bad!
* there is an SRA BLAST, but functionality is limited



Facing a New Challenge

Contrast this situation with the task of searching assembled, curated genomes,

For which we have an excellent tool; BLAST.

o blastn | blastp = blastx & tblastn | tblastx

BLASTN
Enter Query Sequence
Enter accession number(s), gi(s), or FASTA sequence(s) & Clear Query subrange &
TGAAAAAGGGTAACCTCAAAGCTAAAAAGCCCAAGAAGGGGAAGCCCCATTGCAGCCGCAAC From
CCTGTCCTTGTCAGAGGAATTGGCAGGTATTCCCGATC
To
o Sequences producing significant alignments:
Or, upload file Choose File No file chosen (%) PRt
i - JPtaas Select: All None Selected:0
Job Title AT
SOas i+ Alignments
Enter a descriptive title for your BLAST search & Pt Max
Align two or more sequences & e score
.-t Eukaryotic synthetic construct chromosome 18 185
~ BLAST ~) PREDICTED: Pan paniscus 60S ribosomal protein L6-like (LOC100976413), mRNA 185
s PREDICTED: Pan paniscus 60S ribosomal protein L6 pseudogene (LOC100995849), misc RNA 185
S . PREDICTED: Pan paniscus 60S ribosomal protein L6 (LOC100995836), mRNA 185
~“~\ ~| PREDICTED: Pan troglodytes 60S ribosomal protein L6 pseudogene (LOC737972), misc RNA 185
\*\ PREDICTED: Pan troglodytes ribosomal protein L6 (RPL6), transcript variant X8, mRNA 185
\“\ PREDICTED: Pan troglodytes ribosomal protein L6 (RPLE), transcript variant X7, mRNA 185
\\\ ~| Human ORFeome Gateway entry vector pENTR223-RPL6, complete sequence 185
. PREDICTED: Gorilla gorilla gorilla ribosomal protein L6 (RPL6), transcript variant X5, mRNA 185

Essentially, the “"Google of genomics”: ™

Basic local alignment search tool

SF Altschul, W Gish, W Miller, EW Myers... - Journal of molecular ..., 1990 - Elsevier Paperpile

A new approach to rapid sequence comparison, basic local alignment search tool (BLAST),
directly approximates alignments that optimize a measure of local similarity, the maximal
segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP ...

w 99 (Cited by 76248)Re|ated articles Web of Science: 52272 Import into BibTeX

Total Query
score cover

3N
185
185
185
185
185
185
185
185

100%
100%
100%
100%
100%
100%
100%
100%
100%

value
2e-43
2e-43
2e-43
2e-43
2e-43
2e-43
2e-43
2e-43
2e-43

Ident

100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

However, even the scale of reference databases requires algorithmic innovations:

COMMENTARY

:Compressive genomics
E Po-Ru Loh, Michael Baym & Bonnie Berger

1
y Algorithms that compute directly on compressed genomic data allow analyses to keep pace with data generation.
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Fast search of thousands of short-read sequencing
experiments.

SBT introduced by Solomon and Kingsford.
Nature biotechnology. 2016 doi: 10.1038/nbt.3442

Problem;
The vast repository of publicly-available data (e.qg.,
the SRA) is essentially unsearchable by sequence.
Current solutions (BLAST, STAR) too slow. What if |

find a novel txp and want to search the SRA for it?
Solution:

A hierarchical index of k-mer content represented

approximately via Bloom filters. Returns “yes/no”

results for individual experiments — “yes” results

can be searched using more traditional methods.




Recall the bloom filter



Bloom Fllters

Originally designed to answer probabilistic membership
gueries:

s element e In my set 57?
If yes, always say yes

If no, say no with large probability

False positives can happen; talse negatives cannot.



SBT

An SBT is a binary tree of bloom filters, where leaves
represent the k-mer set of a single sample.

Bloom filter: 9
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Each node contains a bloom filter that holds the kmers present in the sequencing experiments under it. 8 is the fraction of kmers required to be found at each
node in order to continue to search its subtree. The SBT returns the experiments that likely contain the query sequence on which further analysis can be
performed.

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.



SBT Operations

Construction (repeatedly insert samples ):

Let b(s) be the bloom filter of sample s

Use b(s) to walk from the root of T to the leaves

For a node u:

f uhas a single child, insert b(s) as the other child

f uhas 2 children recurse into child with < hamming dist to b(s)

f uis aleaf (an experiment), create a parent with filter b(u) U b(s)




SBT Operations

Query (given collection of k-mers Kq, parameter 0):

For a node u:
Hash elements of Kq and check if at least 6 | Kq| k-mers exist
If not then this sub-tree cannot B-match our query
Else continue searching both children recursively

The implementation allows each query k-mer to be given a “weight”
or importance.



SBT Operations

Consider this single k-mer query with 6 = 1
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SBT Operations

Consider this single k-mer query with 6 = 1
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SBT Operations

Consider this single k-mer query with 6 = 1

Compare to children
arly stop in this
( ‘ Subtree

Early stop in this
Subtree




SBT Operations

Consider this single k-mer query with 6 = 1

arly stop in this
‘ Subtree

Early stop in this
Subtree
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SBT Operations

Query (given collection of k-mers Kq, parameter 0):

Thm 2.
Let q be a query string containing ¢ distinct k-mers. If we

treat the k-mers of g as being independent, the probability
that > |07 false-positive k-mers appear in a filter U with

FPR € is

-y (f)f%l—f)f"'

/' i=0
Prob of > |0/ | false positives T
is simply the difference from 1 Prob of < |07 false positives.

Because of assumed indolence of q, these are
independent Binomial trials with “success” rate &



SBT Tricks

High false positive rate lets filters be small (& use only a single hash)

Insert in leaves only k-mers occurring > ¢ times, set

as follows: count(s;) =1 if s;is 300 MB or less, count(s;) = 3 for files of size 300-500 MB,
count(s;) = 10 for files of size 500 MB-1 GB, count(s;) = 20 for files between 1 GB and 3 GB, and
count(s;) = 50 for files > 3 GB or larger FASTA files.

Store Bloom filter as RRR-compressed bit vectors. Greatly reduces
storage space. Individual bits can be accessed without
decompression in O(log m) time.



SBT Speed

Average search time for a single transcript over 2,652 RNA-seqg
experiments in the SRA for human blood, breast and brain tissues
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SBT Speed
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Supplementary Figure 2

Comparison with STAR on batched queries.

STAR was run using an index built from 100 batch-queries and a size 11 pre-index string. Both SBT and STAR were run using one
thread and SBT was limited to a single filter in RAM. SBT is an estimated 4056 times faster than STAR under these conditions. STAR
times are estimated from extrapolating from querying 100 random SRR files.



SBT Accuracy
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Solid lines represent mean true-positive and false-positive rates, dashed lines represent the median rates on the same experiments. Relaxing & leads to a
higher sensitivity at the cost of specificity. In more than half of all queries, 100% of true-positive hits can be found with 8 as high as 0.9.



SBT Efficiency
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Supplementary Figure 5

Total number of Sequence Bloom Tree nodes visited as a function of the number of leaf hits when querying 100 random human

transcripts in the Low query set.

Number of nodes includes both internal and leaf nodes of the SBT. Each point represents a single query. When a query is found in
many of the leaves, the query must also visit a nearly equal number of internal tree nodes, and so the tree structure would not provide
any benefit over merely searching all the leaf filters directly. On the other hand, when the query is found in only a few leaves, the total
number of nodes visited can be significantly smaller than the number of leaves. For the SBT built here, we find that for queries that are
found in 600 or fewer leaves, the tree structure and internal nodes result in an improvement of overall efficiency by visiting fewer than
2652 nodes. A naive approach that did not use the tree would require querying 2652 leaf filters for all queries (denoted by dashed line).
Approximately half of the randomly selected queries known to be expressed in the included experiments fall below this threshold.



SBT Efficiency
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Supplementary Figure 8
Time for querying all known human transcripts.

Total times (single-threaded) for querying all 214,293 human transcripts (in batch mode) against all publicly available blood, breast, and
brain RNA-seq experiments in the SRA for 8 = 0.7, 0.8, 0.9 as well as the extrapolated time to run Sailfish on the full dataset. Sailfish is
significantly faster than nearly all other algorithms for RNA-seq quantification.



Two improved SBT-related papers (RECOMB 2017)

Improved Search of Large Transcriptomic Sequencing Databases
Using Split Sequence Bloom Trees

Brad Solomon! and Carl Kingsford*!

AllSome Sequence Bloom Trees

Chen Sun*!, Robert S. Harris*? Rayan Chikhi3, and Paul Medvedev'l:45



Both share a core 1dea

All Some SBT:

Bau(u) = Bn(u) \ Bn(parent(u))
Bsome (U) = Bu (u) \ Bﬂ(u)

present in all leaves below u,
but not In u’s parent

present in some (but not) all
leaves below u

Split sequence bloom tree (SSBT):

Store 2 filters at each node, rsim and rrem

Tsim = [i—o i present in all leaves below r

n

rrem = Ur—o(bi — Tsim) pPresent in some (but not) all
leaves below r




Both share a core 1dea

This allows an immediate optimization

If rsim Or Ban match the query, we can add all leaves
below r/u without explicitly continuing the search

The details differ

SSBT explicitly removed redundant elements

(a) Uncompressed SSBT
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Both share a core igea
he detalls differ

SBT-AllSome don’t explicitly remove these bits, but
they optimize tree construction to put similar filters
together (agglomerative clustering)
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SSBTs take longer to build than the original
but require considerably less memory to store.

Data Index BFT SBT SSBT
Build Time (Min) 195 6 19
Compression Time (Min) - 6.5 17
Total Time (Min) 195 125 36

Table 4: Build and compression times for SBT, SSBT, and BFT constructed from a 50 experiment set. As
SBT and SSBT were designed to be queried from a compressed state, we compare the time to build and
compress against BFT’s time to build.

Data Index SBT Split SBT
Build Time 18 Hr 78 Hr
Compression Time 17 Hr 19 Hr

Uncompressed Size 1295 GB 1853 GB
Compressed Size 200GB  39.7GB

Table 2: Build statistics for SBT and SSBT constructed from a 2652 experiment set. The sizes are the total
disk space required to store a bloom tree before or after compression. In SSBT’s case, this compression
includes the removal of non-informative bits.

Data Index BFT SBT SSBT
Build Peak RAM (GB) 23 21.5 15.6
Compress Peak RAM (GB) - 242 16.2
Uncompressed Size (GB) 9.2 24 35
Compressed Size (GB) - 39 094

Table 3: Build and compression peak RAM loads and on-disk storage costs for SBT, SSBT, and BFT
constructed from a 50 experiment set. BFT does not have a built-in compression tool and cannot be
queried when compressed. For these reasons, the uncompressed BFT is compared against the compressed
SBT/SSBT.



SSBTs are also faster to query than SBTs

Index TPM >100 TPM >500 TPM >1000

BFT  75Sec(11.8GB) 75Sec (11.8 GB) 75 Sec (11.8 GB)
SBT 19 Sec 2.9 GB) 21 Sec (3.1 GB) 22 Sec (3.2 GB)
SSBT 5.8 Sec (0.64 GB) 6.2 Sec (0.65 GB) 6.3 Sec (0.66 GB)

Table 5: Comparison in query timing (and average peak memory) between SBT, SSBT, and BFT indices for
50 experiments.

Index TPM >100 TPM >500 TPM >1000

SBT 19.7 Min 20.7 Min 20 Min
SSBT 3.7 Min 3.8 Min 3.6 Min

Table 6: Comparison in query timing between SBT and SSBT for 2652 experiments.

Query Time: 0=0.7 6=0.8 =0.9
SBT 20Min 19Min 17 Min
SSBT 3.7Min 3.5Min 3.2 Min

RAM SSBT 31 Sec 29 Sec 26 Sec

Table 7: Comparison of query times using different thresholds 6 for SBT and SSBT using the set of data at
TPM 100.



AllSome SBTs are faster to construct than SBT (called SBT-
SK here), but not much smaller.

SBT-SK SBT-ALSO
construction of tree topology (i.e. clustering) N/A 27Tm
construction of internal nodes 56h 54m 26h 3m
temporary disk space 1,235 GB 2,469 GB
final disk space 200 GB 177 GB

Table 1. Construction time and space. Times shown are wall-clock times. A single thread was used. Note the SBT-SK
tree that was constructed for the purposes of this Table differs from the tree used in [36] and in our other experiments
because the insertion order during construction was not the same as in [36] (because it was not described there).

4500

SBT-SK
SBT-SK+AS
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SBT-ALSO
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They examine fewer
nodes than the original SBT too
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Fig. 3. Number of nodes examined per query for SBT-SK, SBT-ALSO, as well two intermediate SBTs. A set of
1,000 transcripts were chosen at random from Gencode set, and each one queried against the four different trees. A
dot represents a query and shows the number of matches in the database (x-axis) compared to the number of nodes
that had to be loaded from disk and examined during the search (y-axis). For each tree (color), we interpolated a
curve to show the pattern. The dashed horizontal line represents the hypothetical algorithm of simply checking if
the query #-matches against each of the database entries, one-by-one. For 8, we used the default value in the SBT
software (6 = 0.9).



Which makes them taster to query than the original

SBT as well.

SBT-SK SBT-SK+CLUST SBT-ALSO
1 query 1m 11s / 301 MB 56s / 299 MB 34s / 301 MB
10 queries 4m 4s / 305 MB 3m 17s / 304 MB 2m 4s / 313 MB

100 queries
1,000 queries
198,074 queries

Tm 44s / 315 MB

25m 31s / 420 MB

6m 31s / 317 MB
17m 22s / 418 MB

3081m 42s / 22 GB -

4m 44s / 353 MB
8m 23s / 639 MB
462m 39s / 63 GB

Table 2. Query wall-clock run times and maximum memory usage, for batches of different sizes. For the batch of
1,000 queries, we used the same 1,000 queries as in Figure 3. For the batch of 100 queries, we generated three replicate
sets, where each set contains 100 randomly sampled transcripts without replacement from the 1,000 queries set. For
the batch of 10 queries, we generated 10 replicate sets by partitioning one of the 100 query sets into 10 sets of 10
queries. For the batch of 1 query, we generated 50 replicate sets by sampling 50 random queries from Gencode set.
The shown running times are the averages of these replicates. A dash indicates we did not run the experiment. For

6, we used the default value in the SBT software (6 = 0.9).

SBT-SK | SBT-ALSO

regular alg | regular alg ‘ large exact alg large heuristic alg
query time 1397m 18s 195m 33s 10m 35s 8m 32s
query memory 2.3 GB 4.7 GB 1.3 GB 1.2 GB

Table 3. Performance of different trees and query algorithms on a large query. We show the performance of SBT-
SK and three query algorithms using SBT-ALSO compressed with ROAR: the regular algorithm, the large exact
algorithm, and the large heuristic algorithm. We show the wall-clock run time and maximum RAM usage. We used
6 = 0.8 for this experiment. The ROAR compressed tree was 190 GB (7.3% larger than the RRR tree).



BIGSI

| Article | Published: 04 February 2019

 Ultrafast search of all deposited bacterial
' and viral genomic data

Phelim Bradley, Henk C. den Bakker, Eduardo P. C. Rocha, Gil McVean & Zamin Igbal

| Nature Biotechnology 37,152-159 (2019) ~ Download Citation
| 8691 Accesses 5 Citations 335 Altmetric @ Metrics »
L




BIGSI

Bitsliced Genomic Signature Index (BIGSI)

Conceptually, a matrix of Bloom filters where each column is a Bloom filter.

Step 1

3 EASTQ-" {(ATC,TCG} mmmmmmnp  {(9, 3, 9),(2, 5,
FASTQ-2 {CTG,TCA} —————— {4, 5, 6),(4, 3,
FASTQ-3 {TGA,CAG} =————) {(6, 5, 8),(4, 8,
FASTQ-4 {AA-A,AAT} - {(0, 5, 9),(3, 7,
FASTQ-5 {AAT ,ATC} —— {(3, 7, 5),(9, 3,
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Why a different design?

4 human genomes

O 0 O 0 O

O O O 0 O
SNPs dominate (171=0.001)

0.7% of a typical genome in SV

4 E. coligenomes

Two genomes share 60% of genes (171=0.02)



For long queries, BIGSI lets you find the
genomes of interest
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Supplementary Figure 3

BIGSI scores vs. megaBLAST scores.

megaBLAST scores for a search of 100 antimicrobial resistance genes in a BLAST database of RefSeq-81 vs. the equivalent BIGSI
scores in a search of a BIGSI of RefSeq-81. Pearson correlation of the scores was r = 0.998.



Size of different indices
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Benchmarking of BIGSI against fast and small versions of each of SBT and SSBT, using a set of 2,157 antimicrobial resistance genes as a query dataset. We performed
inexact search (T =40%) and show query speed vs. peak disk size when searching databases of sizes from 10-10,000 microbial datasets. Both axes are on a log scale; the
diameter of a dot represents the number of datasets indexed. To compare two methods it is necessary to compare dots of the same size. The ideal method would produce
dots towards the bottom-left. For database sizes greater than 2000, we were unable to build the SBT-fast/SSBT-fast as their uncompressed disk usage exceeded available
space; triangles signify estimated values based a calculated lower bound for disk use (as k-mer content is known), and extrapolated query times (Online Methods).



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420049/#S8
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Supplementary Figure 4

Speed-space tradeoffs for exact-match queries.

We show query time for 2,157 antimicrobial resistance genes with T = 100% vs. peak disk size when searching databases of sizes
from 10-10,000 microbial datasets. BIGSI’s query time does not increase significantly with N, as in this regime the query time is
dominated by the constant time row lookups, rather than the bit-wise AND calculations.



COBS

| | COBS: a Compact Bit-Sliced Signature Index

1

Timo Bingmann'!, Phelim Bradley?, Florian Gauger!, and Zamin Iqbal?

Karlsruhe Institute of Technology, Germany
2 European Molecular Biology Laboratory,
European Bioinformatics Institute,

|
| |
| |
| ! Institute of Theoretical Informatics, |
| |
| |
I Cambridge, United Kingdom |

Like BIGSI (same basic structure), but use different sized
Bloom filters for “documents” of different size.



COBS

Conceptual query scheme for BIGSI & COBS
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COBS

ldea: Some samples are small, some samples are medium, and some are big
Q : Why use a Bloom filter of the same size for all of them?

A : Don’t!
Q : So, use a different size for each experiment?
A : No, we want to store filters in chunks, and per-sample sizes make this hard.

Solution: Put samples into “blocks” based on the filter size we use.
In practice, use a batch size of e.g. 8192 experiments

g 300M '\ Overhead induced
2 by blocking
—
< 200M [
=
g 100 M Size if
a‘? we used per-sample
filter
Space that would™ g\ |

be used if 0K 25K 50K 75K 100K
all filters had to

be the same size documents



COBS

To search, we must look up results in filter blocks of all sizes. To avoid having to hash
the keys multiple times, COBS uses the following idea:

Instead of calculating a new hash function for each filter, we propose
to use only one function with a larger output range and then use a
modulo operation to map it down to each individual filter’s size

ACGA
CGAA
GAAT

«—B—




COBS

AllSome- HowDe- Seq-
phase| SBT SSBT  SBT SBT Othello Mantis BIGSI ClaBS COBS
14 Query Wall-Clock Time in Seconds
31 bp r0 31 80 20 34 62 12 281 10 8
31 bp r2 26 76 19 33 62 13 289 9 8
100 bp rO0| 663 3183 100 600 73 22 783 14 9
100 bp r2| 649 3153 95 588 73 23 455 14 9
1000 bp rO| 794 3466 112 670 63 21 660 15 10
1000 bp r2| 781 3435 108 659 64 27 310 13 10
10000 bp r0| 802 3273 112 622 62 23 699 16 11
10000 bp r2| 790 3243 111 613 62 22 316 15 11
total rO-—r2|6775 29833 1007 5710 783 252 5177 154 114
Document False Positive Rate for 31 bp Queries
rate|0.004 0.004 0.004 0.004 0.001 0.000 0.027 0.024 0.227

Index Size in MiB

size 19844 3254 21335 1911 4410 16486 27794 16236 3022




Intermezzo : The Count Min Sketch

A probabilistic data structure for counting :

Instead of a an array of m-bits, store a 2D, array, CM, of
size d x w — d is called the depth of the array, and there
are d independent hash functions, w is called with width
of the array. This is an O(wd) data structure.

= +Ct

h | — > +Ci

: E///:
hd \ +Ct




Intermezzo : The Count Min Sketch

Like Bloom filters, 2 mains operations:

Update (k, v) — for each entry CMi, hi(k)], where
0 <1< d, increment the value by v.

Query (k) — compute v = min CM[i, hi(k)]
0 <iI <d

Both are O(d) operations

= +Ct

/

h | — = +Ct

O ————=
hd \ = +Ct

= +C;




Intermezzo : The Count Min Sketch

Similar error analysis to Bloom filters (won’t prove bounds)

Let &i be the result returned by Query(i). We have that:

a; < a; (always)

a; < a; +€ll|all, (with probability at least —)

base of nat. log
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Using the CMS for approximate set membership

Main idea : Create a CMS of Bloom Filters rather
than a CMS of counters. To test membership of a
set of k-mers, test them in each of the Bloom filters
and look at the datasets in the intersection of
results.

CMS counters & CMS Bloom Filters

Insertion : + — Insert in Bloom filters (set bits for
each k-mer in each filter to 1)

Query : min(.) = Take intersection of all datasets
(within each partition & repetition) that answer yes
for the hash positions corresponding to this k-mer.



Using the CMS for approximate set membership

Key : Will partition the universe of datasets into W disjoint
sets, and will repeat this process D times. When we issue a
query, we will look at the datasets that, for each repetition,
have the same “partition signature” as the query. Over
many random trials (repetitions), the probability that a
dataset appears in each partition shared with the query by
chance falls off geometrically.

Rep 1 Rep 2 Rep 3

What is the probability that a “random” number has partition sig 1,1,2 ?

Additionally, the Bloom filter that falls in each part. In each rep. will have to say “Yes” to
the query
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Algorithm 1 Algorithm for insertion in RAMBO architecture

Input: Set D of N databases of k-mers
Given: Parameters W x D and false positive rate p
Result: RAMBO (size: W x D )
Generate D partition hash functions ph1(-),...php(-)
RAMBO + W x D array of Bloom filters
while Input FASTA-1 do
for £k-mer x € FASTA; do
ford=1,..D do
insertBloomFilter(x, RAMBO[phy(z), d])
end for
end for

end while
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Repetition 1

- N - N
- 5 & 5 3
S indiny ATC, TCG E E E E
= FASTA4 {ATC, TCG} Tk E ok
= FASTA5 {AAA, AAT} < = s &8
g {AAT, ATC}
. 0| 1 0 1
<
FASTA1 © {TGA, CAG} 2(1(|o0 1]]o
o
[FASTAZ2 ] Dataset 3|11 1] 1
TASTAS Part_ltlon
using Repetition 2 410 1 1 1
FASTA4 Universal epetition s [
. _ 1 1
FASTA5 hashing z
=1 FASTAf {ATC, TCG} 6 1|1 1 || 1
= FASTAS GA, CAG
2 {T } 711(]o0 o1
N 8|0 1 1 0
- FASTA2 {CTG, TCA}
= FASTA4 {AAA, AAT} 9 | 1 0 1 1
'n;: FASTAS5 {AAT, ATC}
o Repetition 1 Repetition 2
Algorithm 1 Algorithm for insertion in RAMBO architecture Note: We only need RAMBO hash table
Input: Set D of N databases of k-mers to hash k-mers once

Given: Parameters W x D and false positive rate p
Result: RAMBO (size: W x D)
Generate D partition hash functions phy(-),...php(-)

RAMBO + W x D array of Bloom filters Partition datasets into W (here = 2) disjoint
while Input FASTA-i do e . .
for k-mer & € FASTA, do partitions, anq repeat the mse.r.tlon process
for d=1,...D do D (here = 2) times. Each partition within each
insertBloomFilter(z, RAMBO[phg(z), - :
e sertBloomPilter(z, RAMBOIpha(z), d) repetition corresponds to a Bloom filter (column).
end for

end while
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Algorithm 2 Algorithm for query using RAMBO architecture

Input: gene sequence ¢
Given: RAMBO bit matrix M (size: W x D )
Result: Set of datasets, each of which contains q.

UNION =0
for d=1:D do
ID = hy(q)

bitsliceq; = get row number ID from M
UNION = bitslicey (Bitwise OR) UNION
end for
INTERSECTION = Everything
for 1 such that UNIONJ[i] =1 do
INTERSECTION = INTERSECTION N Partition][i]
end for
return INTERSECTION
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QUERY q = AAT
HASHES h(q) = 3, 5, 7

v

o . - | O | = PARTITION 1

N - N
pd
o 5 &
= EE
< g 3
o a a
0 0 0 1
11 11
1 0 0o|]|o0 &
2 0 | o 1111 == 10 0 1
&
o O 0 U
4 1 1 1
; ][] Vo
6 1 1 Partition 1, Partition 2,
Repetition 1 Repetition 2
7 L . iy
. . Files in Partition 1 Repetition1:1,4,5
8 1 1 0 Files in Partition 2 Repetition 2 :2, 4, 5
Algorithm 2 Algorithm for query using RAMBO architecture 2 | 1 | | © 1 1 Intersection of Files returned (1,4,5 & 2,4, 5)
Input: gene sequence g R - 1 R - ¢
Given: RAMBO bit matrix M (size: W x D) epetition epetition 2 ]
Result: Set of datasets, each of which contains q. Query Result: FASTA4, FASTAS
UNION = 0
ford=1:D do
ID = hq(q)

bitsliceq = get row number ID from M
UNION = bitslicey (Bitwise OR) UNION
end for
INTERSECTION = Everything
for i1 such that UNION[i] = 1 do
INTERSECTION = INTERSECTION N Partition[i]
end for
return INTERSECTION
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Tested index & query using random subsets of size 3,480 and
2,500 from 136,602 “unique” assemblies from NCBI RefSeaq.
Note: The index here is built over assembled references, not raw
queries. These data have massively different properties, so don’t

compare this 3,480 / 2,500 to the 2,586 experiments from the
SBT / SSBT / All Some paper.
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Average Query time vs FP rate comparison
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3,480 file index
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1e1Memory (bits) comparison vs FP rate (%) over 30k queries

2.4 4 = RAMBO n=3
— BigSI n=3

224 ~——— RAMBO n=4
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3,480 file index
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Average Query time vs FP rate comparison
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2,500 file index
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1e1Memory (bits) comparison vs FP rate (%) over 30k queries
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Average FP rate (%) over 30k queries

2,500 file index
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Some major benefits of RAMBO:

Query scales sub-linearly in # of datasets

Adding a new datasets doesn’t require adding a
new column to the index (as in BIGSI) — though it
does increase the False Positive Rate.



Take-home message for LLSC part 1

Large-scale sequence search is a new but rapidly-
growing field.

There is no “clear” best solution yet.

It’s an exciting place to try out new things.

Unfortunately, the cost of entry is high, since even
getting the data to perform experiments has a large
associated cost.



