
Hashing and AMQs for 
large-scale sequence 

search



Facing a New Challenge
The Sequence Read Archive (SRA) … 

is not searchable by sequence* !  (Yes, I know!)
This renders what is otherwise an immensely valuable public resource largely inert

Q: What if I find e.g., a new disease-related gene, and want to see if it 
appeared in other experiments?
A: (basically) Too bad!

* there is an SRA BLAST, but functionality is limited

Terabyte

Petabyte



Facing a New Challenge
Contrast this situation with the task of searching assembled, curated genomes, 
For which we have an excellent tool; BLAST.

Essentially, the “Google of genomics”:

However, even the scale of reference databases requires algorithmic innovations:



Fast search of thousands of short-read sequencing 
experiments.

Nature biotechnology. 2016 doi: 10.1038/nbt.3442 

Solomon and Kingsford.  SBT introduced by 

Problem:

Solution:

The vast repository of publicly-available data (e.g., 
the SRA) is essentially unsearchable by sequence. 
Current solutions (BLAST, STAR) too slow. What if I 
find a novel txp and want to search the SRA for it?

A hierarchical index of k-mer content represented 
approximately via Bloom filters.  Returns “yes/no” 
results for individual experiments → “yes” results

can be searched using more traditional methods.



Recall the bloom filter



Bloom Filters
Originally designed to answer probabilistic membership 
queries:

Is element e in my set S?

If yes, always say yes

If no, say no with large probability

False positives can happen; false negatives cannot.



SBT
An SBT is a binary tree of bloom filters, where leaves 
represent the k-mer set of a single sample.

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.



SBT Operations

Construction (repeatedly insert samples s):

Let b(s) be the bloom filter of sample s

Use b(s) to walk from the root of T to the leaves
For a node u: 

If u has a single child, insert b(s) as the other child 
If u has 2 children recurse into child with < hamming dist to b(s) 
If u is a leaf (an experiment), create a parent with filter b(u) U b(s)



SBT Operations
Query (given collection of k-mers Kq, parameter θ):

For a node u: 
Hash elements of Kq and check if at least θ | Kq| k-mers exist 
If not then this sub-tree cannot θ-match our query 
Else continue searching both children recursively

The implementation allows each query k-mer to be given a “weight” 
or importance.



SBT Operations
Consider this single k-mer  query with θ = 1
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Compare to children
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SBT Operations
Consider this single k-mer  query with θ = 1
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SBT Operations
Query (given collection of k-mers Kq, parameter θ):

1 −
⌊θℓ⌋

∑
i=0

(ℓ
i )ξi (1 − ξ)ℓ−i

Thm 2. 
Let q be a query string containing 𝓁 distinct k-mers.  If we  
treat the k-mers of q as being independent, the probability 
that > ⌊θ𝓁⌋ false-positive k-mers appear in a filter U with 
FPR ξ is 

Prob of ≤    false positives.⌊θℓ⌋
Because of assumed indolence of q, these are  

independent Binomial trials with “success” rate ξ

Prob of >   false positives 
is simply the difference from 1

⌊θℓ⌋



SBT Tricks
High false positive rate lets filters be small (& use only a single hash)

Insert in leaves only k-mers occurring > c times, set 

Store Bloom filter as RRR-compressed bit vectors.  Greatly reduces 
storage space.  Individual bits can be accessed without 
decompression in O(log m) time. 



SBT Speed
Average search time for a single transcript over 2,652 RNA-seq 

experiments in the SRA for human blood, breast and brain tissues



SBT Speed



SBT Accuracy



SBT Efficiency



SBT Efficiency



Two improved SBT-related papers (RECOMB 2017)



Both share a core idea

Split  sequence bloom tree (SSBT):

Store 2 filters at each node, rsim  and rrem

present in all leaves below r
present in some (but not) all 

leaves below r

All Some SBT:
present in all leaves below u, 

but not in u’s parent
present in some (but not) all 

leaves below u



Both share a core idea
This allows an immediate optimization

if rsim or Ball match the query, we can add all leaves 
below r/u without explicitly continuing the search

The details differ
SSBT explicitly removed redundant elements



Both share a core idea
The details differ

SBT-AllSome don’t explicitly remove these bits, but 
they optimize tree construction to put similar filters 
together (agglomerative clustering)



SSBTs take longer to build than the original 
but require considerably less memory to store.



SSBTs are also faster to query than SBTs



AllSome SBTs are faster to construct than SBT (called SBT-
SK here), but not much smaller.

They examine fewer 
nodes than the original SBT too



Which makes them faster to query than the original 
SBT as well.



BIGSI



BIGSI
 Bitsliced Genomic Signature Index (BIGSI)

Conceptually, a matrix of Bloom filters where each column is a Bloom filter.



BIGSI



Why a different design?



For long queries, BIGSI lets you find the 
genomes of interest



Size of different indices

Benchmarking of BIGSI against fast and small versions of each of SBT and SSBT, using a set of 2,157 antimicrobial resistance genes as a query dataset. We performed 
inexact search (T = 40%) and show query speed vs. peak disk size when searching databases of sizes from 10–10,000 microbial datasets. Both axes are on a log scale; the 
diameter of a dot represents the number of datasets indexed. To compare two methods it is necessary to compare dots of the same size. The ideal method would produce 
dots towards the bottom-left. For database sizes greater than 2000, we were unable to build the SBT-fast/SSBT-fast as their uncompressed disk usage exceeded available 
space; triangles signify estimated values based a calculated lower bound for disk use (as k-mer content is known), and extrapolated query times (Online Methods).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420049/#S8


Size of different indices



COBS

Like BIGSI (same basic structure), but use different sized 
Bloom filters for “documents” of different size.



COBS
Conceptual query scheme for BIGSI & COBS 



COBS
Idea: Some samples are small, some samples are medium, and some are big


 Q : Why use a Bloom filter of the same size for all of them?

 A : Don’t!
 Q : So, use a different size for each experiment?

 A : No, we want to store filters in chunks, and per-sample sizes make this hard.

Solution: Put samples into “blocks” based on the filter size we use.

Size if 
we used per-sample 

filter 

Overhead induced 
by blocking

Space that would 
be used if  

all filters had to  
be the same size

In practice, use a batch size of e.g. 8192 experiments 



COBS
To search, we must look up results in filter blocks of all sizes. To avoid having to hash 
the keys multiple times, COBS uses the following idea:


Instead of calculating a new hash function for each filter, we propose 
to use only one function with a larger output range and then use a 
modulo operation to map it down to each individual filter’s size 



COBS



A probabilistic data structure for counting :  
Instead of a an array of m-bits, store a 2D, array, CM, of 
size d x w — d is called the depth of the array, and there 
are d independent hash functions, w is called with width 
of the array.  This is an O(wd) data structure.

Intermezzo : The Count Min Sketch



Intermezzo : The Count Min Sketch
Like Bloom filters, 2 mains operations:

Update (k, v) — for each entry CM[i, hi(k)], where  
0 < i < d, increment the value by v.
Query (k) — compute v = min CM[i, hi(k)]

0 <i <d

Both are O(d) operations



Intermezzo : The Count Min Sketch

Similar error analysis to Bloom filters (won’t prove bounds)

Let âi be the result returned by Query(i).  We have that:

ai  âi (always)

âi  ai + ✏ ||a||1 (with probability at least
1

�
)

where,
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m
, d =
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�
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m
, and ||a||1 =

nX

i=1

|ai|

base of nat. log



Using the CMS for approximate set membership



Using the CMS for approximate set membership

Main idea : Create a CMS of Bloom Filters rather 
than a CMS of counters.  To test membership of a 
set of k-mers, test them in each of the Bloom filters 
and look at the datasets in the intersection of 
results.

CMS counters → CMS Bloom Filters

Insertion : + → Insert in Bloom filters (set bits for 
each k-mer in each filter to 1)

Query : min(.) → Take intersection of all datasets 
(within each partition & repetition) that answer yes 
for the hash positions corresponding to this k-mer.



Using the CMS for approximate set membership

Key : Will partition the universe of datasets into W disjoint 
sets, and will repeat this process D times.  When we issue a 
query, we will look at the datasets that, for each repetition, 
have the same “partition signature” as the query.  Over 
many random trials (repetitions), the probability that a 
dataset appears in each partition shared with the query by 
chance falls off geometrically.

1,2,3,4,5,6,7

1,3,6 2,4,5,7 2,3,5,6 1,4,7 1,5,7 2,3,4,6

Rep 1 Rep 2 Rep 3

What is the probability that a “random” number has partition sig 1,1,2 ?
Additionally, the Bloom filter that falls in each part. In each rep. will have to say “Yes” to 

the query



Using the CMS for approximate set membership



Using the CMS for approximate set membership

Partition datasets into W (here = 2) disjoint 
partitions, and repeat the insertion process  
D (here = 2) times.  Each partition within each 
repetition corresponds to a Bloom filter (column).



Using the CMS for approximate set membership



Using the CMS for approximate set membership



Using the CMS for approximate set membership

Tested index & query using random subsets of size 3,480 and 
2,500 from 136,602 “unique” assemblies from NCBI RefSeq. 
Note: The index here is built over assembled references, not raw 
queries.  These data have massively different properties, so don’t 
compare this 3,480 / 2,500 to the 2,586 experiments from the 
SBT / SSBT / All Some paper. 



Using the CMS for approximate set membership

3,480 file index



Using the CMS for approximate set membership

3,480 file index



Using the CMS for approximate set membership

2,500 file index



Using the CMS for approximate set membership

2,500 file index



Using the CMS for approximate set membership

Some major benefits of RAMBO:

Query scales sub-linearly in # of datasets

Adding a new datasets doesn’t require adding a 
new column to the index (as in BIGSI) — though it 
does increase the False Positive Rate.



Take-home message for LLSC part 1

Large-scale sequence search is a new but rapidly-
growing field.

There is no “clear” best solution yet.

It’s an exciting place to try out new things.

Unfortunately, the cost of entry is high, since even 
getting the data to perform experiments has a large 
associated cost.


